微积分发明权的争论,对整个18世纪英国与欧陆**在数学发展产生了严重影响:虽然牛顿使用微积分在科学方面取得重大的成就,但牛顿所创立的微积分方法和记号远不如莱布尼兹的微积分容易推广和发展,而英国数学家固守牛顿的微积分方法,使自己逐渐远离分析的主流。在泰勒、麦克劳林之后,英国的数学陷入了长期的停滞状态。而在英吉利海峡的另一边,新的分析数学却在莱布尼茨微积分方法的基础上蓬勃发展起来。这里面,有伯努利的学生欧拉,达朗贝尔、拉格朗日、柯西、魏尔斯特拉斯等等,他们为微积分的严格化做出的努力,使得在牛顿和莱布尼兹时尚不严谨的微积分,在19世纪真正达到了逻辑上的完善和成熟。
极限法(非平凡的即趋0自变量为增量比式的分母的)微积分求导过程中的逻辑问题及新导数定义下的最简微积分教程纲要
在微分方面,莱布尼兹得到了函数的和、差、积、商、幂、方根的微分公式,以及复合函数的链式微分法则,这些都表面莱布尼兹非常重视微积分的形式运算法则和公示系统,而牛顿虽然也发现和运用了这些法则,却没有整理和陈述一般化的公式,他更大的兴趣是微积分方法的直接运用。
牛顿和菜布尼兹都是时代的巨人,两位学者也从未怀疑过对方的科学才能。就微积分的创立而言,尽管二者在背景、方法和形式上存在差异、各有特色,但二者的功绩是相当的.他们都把微积分作为一种能应用于一般函数的普遍方法。所不同的是,牛顿更多关心的是创立微积分的体系和基本方法,而莱布尼兹似乎更关心运算公式的建立与推广.莱布尼兹的微积分思想虽然不如牛顿那样有条理,但却富于启发性。
从正式发表论文的角度,牛顿在1687年以前没有公开发表过任何微积分的文献,而莱布尼兹则在1684和1686年分别发表了微分学与积分学的论文。而从研究的角度,牛顿创立微积分比莱布尼兹更早。谁都无法否认的是,两人都是**地创造了微积分,且各有特点。
微积分发明权的争论,对整个18世纪英国与欧陆**在数学发展产生了严重影响:虽然牛顿使用微积分在科学方面取得重大的成就,但牛顿所创立的微积分方法和记号远不如莱布尼*的微积分容易推广和发展,而英国数学家固守牛顿的微积分方法,使自己逐渐远离分析的主流。在泰勒、麦克劳林之后,英国的数学陷入了长期的停滞状态。而在英吉利海峡的另一边,新的分析数学却在莱布尼茨微积分方法的基础上蓬勃发展起来。这里面,有伯努利的学生欧拉,达朗贝尔、拉格朗日、柯西、魏尔斯特拉斯等等,他们为微积分的严格化做出的努力,使得在牛顿和莱布尼*时尚不严谨的微积分,在19世纪真正达到了逻辑上的完善和成熟。
暂无
其他
佚名